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2. Experimental 
 

In this work, a two-step anodization process was employed for the fabrication of 
porous alumina membranes. The effects of anodizing electrolytes and anodization 
conditions on pore structures of the membranes were systematically studied. High purity 
aluminum foil (Al 99.995%, thickness 0.11 mm) was first purged with acetone in an 
ultrasonic cleaner to degrease its surface. The sample was subsequently etched in 1 M 
NaOH followed by rinsing with ultrapure water. Electrochemical cell for the anodization 
process consisted of a platinum plate as cathode and an aluminum foil as anode. The 
aluminum foil was anodized for 1 hour under constant voltages of 15-25 V and 40-60 V 
using 1.8 M sulfuric acid and 0.3 M oxalic acid as electrolytes respectively. After the first 
anodization, a strip-off process was carried out in a mixture of 1.8% chromic acid and 6% 
phosphoric acid to remove the aluminum oxide formed, leaving behind nanosized and well-
ordered concave patterns on the aluminum foil. This would act as the self-assembled mask 
for the subsequent anodization process. The second anodization process was performed 
using the same conditions as first anodization for 4 hours. After the second anodization, 
remaining aluminum foil was removed in a mixed solution of CuCl2 and HCl. The bottoms 
of the pores, closed by barrier layer, were opened using 5% H3PO4 solution. Microstructural 
characterizations on the template produced were subsequently performed using scanning 
electron microscope and X-ray diffraction to elucidate its morphology and microstructure. 

  

3. Results and Discussion 
 

As shown in Table 1, the current density increases slowly with increasing applied 
anodization potential. 
 

Table 1: Applied potentials and corresponding current densities for aluminum anodised in oxalic 
acid at same temperature and electrolyte concentration, with constant agitation of the electrolyte 

(500 rpm) 
 

Anodisation potential (V) 40 55 60 

Current density (mA cm-2) 5.66 11.32 16.98 

 
The formation rate of the alumina was determined experimentally by measuring the 

thickness of porous alumina membrane produced.  Formation rates of between 86 nm min-1 
to 146 nm min-1 were achieved at applied potentials of between 40 V and 60 V.  
Temperature was found to have a significant influence on the growth of porous alumina 
membranes. Growth rates of porous alumina (anodized in oxalic acid at 55 V) were 90 nm 
min-1 and 120 nm min-1 at 10°C and 20°C respectively. Theoretically, there is an 
approximate factor of two for volume expansion from aluminum to alumina. Nevertheless, 
actual thickness of alumina after anodization could be much thinner, especially at lower 
temperatures, when the anodising rates are slow due to chemical dissolution of alumina 
during anodization. The dissolution rate is a function of anodizing solution composition and 
operating temperature [5].  

Fig. 1 shows the typical SEM images of porous alumina membranes which have 
been anodised in 0.3 M oxalic acid at 10°C. As shown in Fig. 1(a), most of the pore 
channels in the porous alumina membranes are regularly aligned with little or no tilt with 
respect to the surface normal and without lateral branching. The porous alumina membranes 
exhibit regular well-ordered honey-comb pore morphology as exemplified in the plan-view 
SEM image in Fig. 1(b). Prolonged pore widening process tends to suffer from the 
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4. Conclusion 
 
Porous alumina membranes having well-ordered self-assembled pore structures with 

pore diameters of between 15-135 nm were successfully fabricated using a two-step 
anodisation process. Pore diameter and length could be controlled precisely via suitable 
selection of anodizing conditions such as electrolyte composition, operating temperature and 
applied potential. The effect of anodising condition on pore formation rate was carefully 
studied and the constant ratio between anodisation potential and interpore distance for the 
porous alumina membranes was established. 
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